Sandia National Laboratories, Sandia National Laboratories

Position ID: 1902-SANDIAPOSTDOC [#16566, 674254]
Position Title: Postdoctoral Appointee - Scientific Machine Learning
Position Type: Postdoctoral
Position Location: Albuquerque, New Mexico 87185, United States [map]
Subject Area: Scientific Machine Learning
Application Deadline: 2021/01/09 11:59PMhelp popup finished (2020/10/20, finished 2021/07/10, listed until 2021/01/09)
Position Description:    

*** this position has been closed. ***

Posting Duration

This posting will be open for application submissions for a minimum of seven (7) calendar days, including the ‘posting date’. Sandia reserves the right to extend the posting date at any time.

What Your Job Will Be Like

Are you passionate about developing new algorithms and approaches to address challenges posed by complex applications? Check this out! Our diverse team is seeking a highly motivated Postdoctoral Appointee to conduct research in developing new mathematical algorithms for training deep neural networks scaling to leadership class HPC platforms. 

The Computer Science Research Institute is committed to nurturing a culture compatible with a broad group of people and perspectives in accordance with the changing makeup of the workforce. In support of this vision, the center actively recruits applicants from diverse groups of backgrounds and fosters an inclusive community.

In this role, you will work collaboratively on a multidisciplinary research team conducting fundamental algorithmic research. On any given day, you may be called on to:

  • Conduct leading-edge research in Scientific Machine Learning (SciML)
  • Work towards publishing new developments in high-profile peer-reviewed scientific journals or refereed conference proceedings; contribute to development of open-source software for high performance computing environments
  • Interact with a diverse set of colleagues from both your own field, applications specialists, and others
  • Travel as needed to support projects
  • Work with export-controlled information which requires U.S. Person status

About Our Team

The Computational Mathematics Department (01442) conducts research in computational and applied mathematics motivated by science and engineering applications of interest to Sandia National Laboratories and the U.S. Department of Energy. Members of the department interact and collaborate with a range of Sandia and DOE staff and also maintain a research presence in the external professional community by collaborating with universities and industry, publishing peer-reviewed literature, participating in professional societies, and refereeing and editing for journals.
 

Position Information

This postdoctoral position is a temporary position for up to one year, which may be renewed at Sandia's discretion up to five additional years. The PhD must have been conferred within three years prior to employment.

Individuals in postdoctoral positions may bid on regular Sandia positions as internal candidates, and in some cases may be converted to regular career positions during their term if warranted by ongoing operational needs, continuing availability of funds, and satisfactory job performance.

About Sandia

Sandia National Laboratories is the nation’s premier science and engineering lab for national security and technology innovation, with teams of specialists focused on cutting-edge work in a broad array of areas. Some of the main reasons we love our jobs:

  • Challenging work with amazing impact that contributes to security, peace, and freedom worldwide
  • Extraordinary co-workers
  • Some of the best tools, equipment, and research facilities in the world
  • Career advancement and enrichment opportunities
  • Flexible schedules, generous vacations, strong medical and other benefits, competitive 401k, learning opportunities, relocation assistance and amenities aimed at creating a solid work/life balance*


World-changing technologies. Life-changing careers.  Learn more about Sandia at: http://www.sandia.gov

*These benefits vary by job classification.

EEO

All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, age, disability, or veteran status and any other protected class under state or federal law.

Qualifications We Require

  • PhD in mathematics, computer science, or related engineering or science field (conferred within 3 years prior to employment)
  • Experience with optimization or deep learning
  • Experience in numerical methods development
  • Experience with high-performance parallel computing environments including MPI, OpenMP or CUDA

Due to U.S. export-control laws, only U.S. Persons (U.S. citizens, lawful permanent residents, asylees, or refugees) are eligible for consideration.

Qualifications We Desire

  • Experience with multi-level methods, domain decomposition, or hierarchical matrices
  • Experience with Tensorflow/pyTorch, and the application of machine learning (ML) techniques to large datasets
  • Passionate around applying machine learning to problems in science and engineering
  • Excellent written, verbal communication and interpersonal skills
  • A dedication to encouraging an inclusive culture, as demonstrated in your application materials
  • Proven track record teaming in an interdisciplinary R&D environment
  • Significant experience in code development, potentially including software design using object-oriented programming, high-performance computing, distributed or parallel computing, and/or coding for computer architectures
  • A background in solving problems in science and engineering that involve encounters with real world data
  • Proven research community leadership through activities such as participation in student or professional organizations, service on committees, workshop and/or conference organization, and editorial roles
  • Able to acquire and maintain a DOE security clearance

Security Clearance

This position does not currently require a Department of Energy (DOE) security clearance.

Sandia will conduct a pre-employment drug test and background review that includes checks of personal references, credit, law enforcement records, and employment/education verifications. Furthermore, employees in New Mexico need to pass a U.S. Air Force background screen for access to Kirtland Air Force Base. Substance abuse or illegal drug use, falsification of information, criminal activity, serious misconduct or other indicators of untrustworthiness can cause access to be denied or terminated, resulting in the inability to perform the duties assigned and subsequent termination of employment.

If hired without a clearance and it subsequently becomes necessary to obtain and maintain one for the position, or you bid on positions that require a clearance, a pre-processing background review may be conducted prior to a required federal background investigation. Applicants for a DOE security clearance need to be U.S. citizens. If you hold more than one citizenship (i.e., of the U.S. and another country), your ability to obtain a security clearance may be impacted.

Members of the workforce (MOWs) hired at Sandia who require uncleared access for greater than 179 days during their employment, are required to go through the Uncleared Personal Identity Verification (UPIV) process. Access includes physical and/or cyber (logical) access, as well as remote access to any NNSA information technology (IT) systems. UPIV requirements are not applicable to individuals who require a DOE personnel security clearance for the performance of their SNL employment or to foreign nationals. The UPIV process will include the completion of a USAccess Enrollment, SF-85 (Questionnaire for Non-Sensitive Positions) and OF-306 (Declaration of for Federal Employment). An unfavorable UPIV determination will result in immediate retrieval of the SNL issued badge, removal of cyber (logical) access and/or removal from SNL subcontract.  All MOWs may appeal the unfavorable UPIV determination to DOE/NNSA immediately. If the appeal is unsuccessful, the MOW may try to go through the UPIV process one year after the decision date.

 


We are not accepting applications for this job through Mathjobs.Org right now. Please apply at https://sandia.jobs/albuquerque-nm/postdoctoral-appointee-scientific-machine-learning/06A41771F02048EEB017F3E8E2A83512/job/.
Contact: Taylor Williams
Email:
Postal Mail:
PO Box 5800 MS 1497
Albuquerque, NM 87185-0100
Web Page: http://www.sandia.gov/

© 2021 MathJobs.Org, American Mathematical Society. All Rights Reserved.